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QUAD(gq,n,r), a Family of Stream Ciphers

State: n-tuple x = (x1,T9,...,2,) € K", K = GF(q)

Update: x «— (Q1(x),Qa(x),...,Qn(x)). Here each Q; is a

randomly chosen, public quadratic polynomial

Output: r-tuple (Pi(x), P2o(x),...,P.(x)) before updating
(again, each P; is a random, public quadratic polynomial)

At Eurocrypt 2006, Berbain-Gilbert-Patarin reported speeds for
QUAD(2, 160, 160), QUAD(16, 40, 40), and QUAD(256, 20, 20).



A graphical Depiction

TO X1 = Q(XO) — X2 = Q(Xl) — X3 = Q(XQ) —
| i |
Yo=P(x0) y1=Px1) y2=P(x2) y3=P(x3)

Typically g is a power of 2 allowing each output vector
y; € GF(q)" to encrypt the next rlggq bits of plaintext in a
straighttorward way.



QUAD, “Provably Secure'?

e Security Theorem: Breaking QUAD implies the capability to solve
n + r random quadratic equations in 1 variables,

e Generic MQ (Multivariate Quadratics) is an NP-hard problem.

e All known algorithms to solve such a generic quadratic polynomial
system have average time complexity 29"+ \when r/n =
constant; most also require exponential space.



Difficult Generically, But . . .

Following the position paper of Koblitz-Menezes (“Another look
at Provable Security” J. of Crypto.) we would like to discuss the
implications of the security proof.

e How tight is the security reduction?
e How difficult is the underlying problem?
e \What is the best attack known today?

e |s the security reduction complete?



Instances and Provability

We would like to proposed the following classification of instances
of families of cryptosystems covered by security reductions:
Broken: We can attack and break the instance.

Unprovable: We can solve the underlying hard problem.

Unproven: A putative feasible attack on the instance need not
lead to an improvement on the solution of the underlying hard
problem due to the looseness factor in the security reduction.

Proved: Security proof works as advertised for this instance.



Today's System-Solving

State-of-the-art algorithms to solve m generic polynomial
equations in n GF(q)-variables are all related in some way to
Buchberger's algorithm for computing Grobner Bases.

e XL, first proposed by Lazard and rediscovered by Courtois et al
Essence: an elimination on a Macaulay Matrix. Also the adjuncts

— FXL ('F' for "fix") introduces guessing variables
— XL2, running the elimination on the highest monomials only
and then repeatedly multiply by variables to raise degrees.

e F, (now in MAGMA) and F'5, of which XL2 is an inferior form.
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Facts of Life for XL

4 monomials: T = [tP] ((1 — (g —t)—<n+1>); (1)

| I (1 -t [/ 1—td
# free monoms: T'— 1 > [t7] <(1 — gy 11 (1 —ad | |- (2)
Here degp; := d;, |uls := coefficient of u in expansion of s. We expect a

solution at Dxr, = min{D : RHS of Eq. 2 < 0}. If the (p;) is g-semi-regular
(true almost always), Eq. 2 is = as long as its RHS remains positive.

= (). T I= 17 (10 ()

is the reduced case for large fields (¢ > D). Cxp ~ 3kT?(co+ c11gT) using

a modified Wiedemann algorithm (k is average number of terms per equation).



XL with Homogenous Wiedemann

. Create the extended Macaulay matrix of the system to a certain degree Dx: Multiply
each equation of degree d; by all monomials up to degree D x — d; and take the matrix of coefficients.

. Randomly delete some rows then add some columns to form a square system, Ax = 0
where dim A = BT + (1 — B)R. Usually 8 = 1 works. Keep the same density of terms.

. Apply the homogeneous version of Wiedemann's method to solve for x:

(a) Set k = 0 and go(z) = 1, and take a random b.

(b) Choose a random uyy1 [usually the (k + 1)-st unit vector].

(c) Find the sequence uy41Ab starting from ¢ = 0 and going up to 2N — 1.

(d) Apply gi as a difference operator to this sequence, and run the Berlekamp-Massey algorithm
over GF(q) on the result to find the minimal polynomial fx11.

(e) Set gk+1 := fr+19x and k := k + 1. If deg(gx) < N and k < n, go to (b).

. Compute the solution x using the minpoly f(2) = gr(2) = cnz™ +cm_12™ '+ F 2
Take another random b. Start from x = (cmAm_g—i—cm_lAm_g_l—i—- - -4 c¢¢1)b, continuing
to multiply by A until we find a solution to Az = 0.

L,

. If the nullity £ > 1 repeat the check below at every point of an affine subspace (g points if £ = 2).

. Obtain the solution from the last few elements of x and check its correctness.



QUAD(256, 20,20) Unprovable from MQ

e Is 20 GF(256) variables in 40 equations hard to solve?

e \We say no! Generic XL solves this in 2% cycles, only a few hours
on a decent computer.

e [he technical details are: cycles per multiplication on a P4 =~ 12

(3 L1 cache loads); Dxy, =5 and T' = 53130. Max number of
terms per equation is k < 231, so Cxy ~ 9 x 102 < 2%

e Hence no security is provable [nor claimed by orig. QUAD paper]
from MQ (20 vars, 40 egs) over GF(256).




Direct Attack

e Can QUAD(256,20,20) be a cipher that is acceptably secure
without being provable? We say no, and estimate 2% cycles for

a direct attack that breaks QUAD(256, 20, 20).

e Often we can acquire some cipher stream via known plaintext.
This attack only uses two blocks (27 bits) of output.

o Let the instance be x;1; = Q(x,), y;, = P(x;) with P,Q :
GF(q)" — GF(q)". With (WLOG) yq and yq, we solve for xg

P(xg) = yo, P(Q(x0)) = y1.
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20 quadratics, 20 quartics over GF(256)

e 25 mults upper bound, real value should be more like < 209

e Significant parameters are:

— degree Dy, = 10,

— #monomials T' = (i’g) = 30045015,

— #initial equations is R = 20 X (288) + 20 % (266) — 66766700,
— total # terms in those equations is

T:=kR=20(%)(%) +20(%) (%) = 63287924700.

Should be doable on a machine or cluster with 384GB of memory.
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Testing Attack vs. QUAD(256,n,n)

n 9 10 11 12 13 14 15
D 7 7 7 8 8 8 8
Cxr || 2.29-10° | 7.55-10% | 2.30-10° | 5.12-10% | 1.54-10° | 4.39-10° | 1.17-10°
lgCxr, 7.84 9.56 1.12-10 | 1.56-10 | 1.72-10 | 1.87-10 | 2.02-10
T 1.14 -10% | 1.94-10% | 3.28-10% | 1.26-10° | 2.03-10° | 3.20-10° | 4.90 - 10°
aTm 120 147 177 245 288 335 385
clks 14.6 13.6 12.1 13.1 12.9 12.8 12.7

MS C++ 7; P-D 3.0GHz, 2GB DDR2-533, T: #monomials, aTm: average terms in a row, clks: number of clocks per multiplication.

e Serial Code on 1386 requires three dependent L1 accesses per
multiplication (3 cycles K8/Core, 4 cycles P4) plus change.

e Unrolling loops for x86-64 saves 20%—25% cycles a multiplication.
e 256-semi-regularity assumption fits empirical data up to n = 15.
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QUAD(16,40,40) Unprovable, but not Broken

e 80 eqgs. in 40 GF(16) vars. estimated to < 272 cycles in XL.
e [echnical data: Dxy =8, T = 377348994, and k < 861.

e So QUAD(16,40,40) can never be “provably secure” from MO
(40,80). But we don't know how to break it in 2%,

e Direct solution takes < 2% mults (guesstimated at 2% cycles)
via XL-Wiedemann (Dxr = 14, T = 3245372870670).

e Data complexity is 10000 TB (only ~ 2° bits) for the matrix.
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Why Only 2 Blocks?

e Practical answer: we test with degree-8 equations; doesn't help.

e [heoretical answer: the XL operating degree is

( (1= (1 —th)"

Dy =min< D : [t”] T <0,,

\ /

Hence w := Dx/n ~ the smallest positive zero of f,(w) :=
7{ (1 —2%)"(1 — 24" 7{ dz (14 2)(1—2H\"
dz =
(1 _ Z)nJrlanJrl Z(l _ Z) S W
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Diminishing Returns (for large q)

4 n
In asymptotic analysis, f,(w) = fﬁz(ffz) (Hz)z(ul,_z )) can

only vanish if the saddle point equation of the integral, letting the
derivative of the expression between the paren be zero:

(w—5)2"+2° -2 +2—w=0

has double roots (a “monkey saddle”), which happens when w is

very close to 0.2 (actually ~ 0.200157957).

Similar computations including degree-8 equations only make it
w ~ 0.1998. Clearly not worth our time.
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QUAD(2,160,160): An Unproven Case

e QUAD(2, 160, 160) takes ~ 21 multiplications to attack directly:
just solve 160 equations in 160 variables using XL.

e For n < 200, the effect of using quartic and degree-8 equations
(2nd, 3rd output blocks and beyond) is not discernible.

e Similar asymptotics as above shows that for large m they
(eventually) make a big difference.

e [he underlying M@ problem of 160 vars and 320 equations takes

2140 multiplications, which seems high enough, but . . .
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Tightness of Reduction

e QUAD attack implies an M@ attack with a loss of efficiency.

e Specifically, if Ar bits of output from QUAD(2,m,r) can be
distinguished from uniform with advantage € in time 1" then

a random M@ system of n + r equations in n variables over
GF(2) can be solved with probability 27%¢/X in time

27 2)\2 27 )\2 27 )\2
<2’ (T+()\+2)T5—|—log( n2 )+2>| n2 T«

- €2 € €

where Tl := time to run one block of QUAD(2, n, 1).
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Proven and Unproved Cases for ¢ = 2

The looseness factor is about 21On2)\3/63. fe=0.01 n=r
and L = An = 2% this factor is then 2°V/n. The theorem
cannot conclude T' > 2% without assuming that T" > 2290 /n,

e n = 160 is hence Unproven (original QUAD paper states this).

oen = 256: Proven for L = 2% ¢ = 0.01, T' ~ 2°%
(multiplications). In fact we only need 7" > 2168,

en = 350: Proven for L = 2% ¢ = 0.01, TV ~ 2%
(multiplications). We only needed T" > 221
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A Note on T2%37

o Often 72370 is ysed as the cost of eliminations.

e [his discounts the huge constant that is expected from the
Coppersmith-Winograd paper.

o \We improve T?37 to T2, using a sparse matrix algorithm, but
there are still factors in front of T

e This explains the gap in the analysis for QUAD(2, 350, 350).
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Conclusions and TODOs

e Generically MQ is believed to be exponential in n. Complexity
of breaking QUAD would then also be of the form 29"+ Byt
the coefficient a (= a(q,r/n)) can be surprisingly small.

e QUAD is clearly a worthwhile attempt and worth optimizing further.

e \We need tighter reductions. At the moment, we are reducing from
what seems to be a more difficult problem to an easier problem.

e Comparisons between ciphers w. provably secure parameters?’

e [aking into account storage access delays and parallelism?
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Why Wiedemann and not Lanczos

The two should be more or less equivalent in modern forms. We
chose Wiedemann over Lanczos because in the naive forms

e Because it is easier to program well. Lanczos requires multiplying
by a sparse matrix in opposite directions.

e We don't need to use a random diagonal vector.

e \We just had the code ready to use.
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Why XL and not Fj

o [heoretical: Working on the top degree monomials, for large fields
XL2/F4/F5 play with one fewer variable. This may not offset
dense vs. sparse matrix equation solving difference it w > 2.

e Practical: If the matrices of F4/F5 will eventually become
moderately dense, we will run out of memory before time.

m—n Dxi, Dyeg n=9 | n=10 | n=11 n =12 n =13
0 2 m 6.090 | 46.770 | 350.530 | 3322.630 | sigmem
1 m [ 1.240 8970 | 53.730 | 413780 | 2538.870
2 [mtly | pmaA2ovmiZy | g3 2230 | 12450 | 88.180 | 436.600

Test results given on P4-3.2G, 2GB RAM, MAGMA-2.12 with Fy.

e Pragmatic: we don't have a copy of F5 to play with.
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Basic XL at Degree D
Let 7P):={deg < D monomials}, T := |TP)|

e EXTEND: first multiply each p; of degree d; by every monomial
xP = :E[il e CE,%” c TWP~di) 4 get equations R

o LINEARIZE: then reduce RP) as a linear system in all the
xP € TW) \We may be able to solve the system or to reduce
down to a univariate equation (say in x1).

R = ]R(D)\ and I counts resp. equations and independent
equations among R,
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Toy XL example over GF(7)

p1: x4+ Ay*+ 2%+ bry+ 2xz+ 6yz+
pa: 3%+ 2P+ 32°4+ dxy+ 6zt 2yz+

ps: 2%+ 3yt+ 22°+ bay+
pa: 6224+ 3yP+ 3%+

brz+

2yz+
yz+

Sdr+

3Y+

6rx+ 4dy+

4+

Y+
Sy

D2+
3z+

Z+
22+

oS O O O

Here n = 3, m = 4, we will use D = 3, and multiply every

equation by 1, z, vy, z to get ((g)) = 20 monomials (including 1)

and 4 X 4 = 16 equations.
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The Extended Macaulay Matrix

2
0

7 vor
1 3

Tz Yz
2 6

zy
)
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IMination

The Result of EI

2
0

7 vor
5 0

Tz Yz
5 0

Ty
3
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Operative Condition and Cost of XL

e XL solves a system if T'— I < min(D,q—1).

e Other situations where XL also succeeds are called “pathological
terminations . [Our example above is one |

o let (N, M) := the time complexity of elimination on N
variables and M equations, then XL takes time Cy;, ~ E(T, R).

e Asymptotically Ig E(T, R) ~ wlgT, where w is "the order of
matrix multiplication”. An often-cited number is 2.376.
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