Analysis of QUAD

Owen (Chia-Hsin) Chen, National Taiwan University

March 27, FSE 2007, Luxembourg

Work at Academia Sinica supervised by Dr. Bo-Yin Yang
Jointly with Drs. Dan Bernstein and Jiun-Ming Chen

QUAD(gq,n,r), a Family of Stream Ciphers

State: n-tuple x = (x1,T9,...,2,) € K", K = GF(q)

Update: x «— (Q1(x),Qa(x),...,Qn(x)). Here each Q; is a

randomly chosen, public quadratic polynomial

Output: r-tuple (Pi(x), P2o(x),...,P.(x)) before updating
(again, each P; is a random, public quadratic polynomial)

At Eurocrypt 2006, Berbain-Gilbert-Patarin reported speeds for
QUAD(2, 160, 160), QUAD(16, 40, 40), and QUAD(256, 20, 20).

A graphical Depiction

TO X1 = Q(XO) — X2 = Q(Xl) — X3 = Q(XQ) —
| i |
Yo=P(x0) y1=Px1) y2=P(x2) y3=P(x3)

Typically g is a power of 2 allowing each output vector
y; € GF(q)" to encrypt the next rlggq bits of plaintext in a
straighttorward way.

QUAD, “Provably Secure'?

e Security Theorem: Breaking QUAD implies the capability to solve
n + r random quadratic equations in 1 variables,

e Generic MQ (Multivariate Quadratics) is an NP-hard problem.

e All known algorithms to solve such a generic quadratic polynomial
system have average time complexity 29"+ \when r/n =
constant; most also require exponential space.

Difficult Generically, But . . .

Following the position paper of Koblitz-Menezes (“Another look
at Provable Security” J. of Crypto.) we would like to discuss the
implications of the security proof.

e How tight is the security reduction?
e How difficult is the underlying problem?
e \What is the best attack known today?

e |s the security reduction complete?

Instances and Provability

We would like to proposed the following classification of instances
of families of cryptosystems covered by security reductions:
Broken: We can attack and break the instance.

Unprovable: We can solve the underlying hard problem.

Unproven: A putative feasible attack on the instance need not
lead to an improvement on the solution of the underlying hard
problem due to the looseness factor in the security reduction.

Proved: Security proof works as advertised for this instance.

Today's System-Solving

State-of-the-art algorithms to solve m generic polynomial
equations in n GF(q)-variables are all related in some way to
Buchberger's algorithm for computing Grobner Bases.

e XL, first proposed by Lazard and rediscovered by Courtois et al
Essence: an elimination on a Macaulay Matrix. Also the adjuncts

— FXL ('F' for "fix") introduces guessing variables
— XL2, running the elimination on the highest monomials only
and then repeatedly multiply by variables to raise degrees.

e F, (now in MAGMA) and F'5, of which XL2 is an inferior form.

6

Facts of Life for XL

4 monomials: T = [tP] ((1 — (g —t)—<n+1>); (1)

| I (1 -t [/ 1—td
free monoms: T'— 1 > [t7] <(1 — gy 11 (1 —ad | |- (2)
Here degp; := d;, |uls := coefficient of u in expansion of s. We expect a

solution at Dxr, = min{D : RHS of Eq. 2 < 0}. If the (p;) is g-semi-regular
(true almost always), Eq. 2 is = as long as its RHS remains positive.

= (). T I= 17 (10 ()

is the reduced case for large fields (¢ > D). Cxp ~ 3kT?(co+ c11gT) using

a modified Wiedemann algorithm (k is average number of terms per equation).

XL with Homogenous Wiedemann

. Create the extended Macaulay matrix of the system to a certain degree Dx: Multiply
each equation of degree d; by all monomials up to degree D x — d; and take the matrix of coefficients.

. Randomly delete some rows then add some columns to form a square system, Ax = 0
where dim A = BT + (1 — B)R. Usually 8 = 1 works. Keep the same density of terms.

. Apply the homogeneous version of Wiedemann's method to solve for x:

(a) Set k = 0 and go(z) = 1, and take a random b.

(b) Choose a random uyy1 [usually the (k + 1)-st unit vector].

(c) Find the sequence uy41Ab starting from ¢ = 0 and going up to 2N — 1.

(d) Apply gi as a difference operator to this sequence, and run the Berlekamp-Massey algorithm
over GF(q) on the result to find the minimal polynomial fx11.

(e) Set gk+1 := fr+19x and k := k + 1. If deg(gx) < N and k < n, go to (b).

. Compute the solution x using the minpoly f(2) = gr(2) = cnz™ +cm_12™ '+ F 2
Take another random b. Start from x = (cmAm_g—i—cm_lAm_g_l—i—- - -4 c¢¢1)b, continuing
to multiply by A until we find a solution to Az = 0.

L,

. If the nullity £ > 1 repeat the check below at every point of an affine subspace (g points if £ = 2).

. Obtain the solution from the last few elements of x and check its correctness.

QUAD(256, 20,20) Unprovable from MQ

e Is 20 GF(256) variables in 40 equations hard to solve?

e \We say no! Generic XL solves this in 2% cycles, only a few hours
on a decent computer.

e [he technical details are: cycles per multiplication on a P4 =~ 12

(3 L1 cache loads); Dxy, =5 and T' = 53130. Max number of
terms per equation is k < 231, so Cxy ~ 9 x 102 < 2%

e Hence no security is provable [nor claimed by orig. QUAD paper]
from MQ (20 vars, 40 egs) over GF(256).

Direct Attack

e Can QUAD(256,20,20) be a cipher that is acceptably secure
without being provable? We say no, and estimate 2% cycles for

a direct attack that breaks QUAD(256, 20, 20).

e Often we can acquire some cipher stream via known plaintext.
This attack only uses two blocks (27 bits) of output.

o Let the instance be x;1; = Q(x,), y;, = P(x;) with P,Q :
GF(q)" — GF(q)". With (WLOG) yq and yq, we solve for xg

P(xg) = yo, P(Q(x0)) = y1.

10

20 quadratics, 20 quartics over GF(256)

e 25 mults upper bound, real value should be more like < 209

e Significant parameters are:

— degree Dy, = 10,

— #monomials T' = (i’g) = 30045015,

— #initial equations is R = 20 X (288) + 20 % (266) — 66766700,
— total # terms in those equations is

T:=kR=20(%)(%) +20(%) (%) = 63287924700.

Should be doable on a machine or cluster with 384GB of memory.

11

Testing Attack vs. QUAD(256,n,n)

n 9 10 11 12 13 14 15
D 7 7 7 8 8 8 8
Cxr || 2.29-10° | 7.55-10% | 2.30-10° | 5.12-10% | 1.54-10° | 4.39-10° | 1.17-10°
lgCxr, 7.84 9.56 1.12-10 | 1.56-10 | 1.72-10 | 1.87-10 | 2.02-10
T 1.14 -10% | 1.94-10% | 3.28-10% | 1.26-10° | 2.03-10° | 3.20-10° | 4.90 - 10°
aTm 120 147 177 245 288 335 385
clks 14.6 13.6 12.1 13.1 12.9 12.8 12.7

MS C++ 7; P-D 3.0GHz, 2GB DDR2-533, T: #monomials, aTm: average terms in a row, clks: number of clocks per multiplication.

e Serial Code on 1386 requires three dependent L1 accesses per
multiplication (3 cycles K8/Core, 4 cycles P4) plus change.

e Unrolling loops for x86-64 saves 20%—25% cycles a multiplication.
e 256-semi-regularity assumption fits empirical data up to n = 15.

12

QUAD(16,40,40) Unprovable, but not Broken

e 80 eqgs. in 40 GF(16) vars. estimated to < 272 cycles in XL.
e [echnical data: Dxy =8, T = 377348994, and k < 861.

e So QUAD(16,40,40) can never be “provably secure” from MO
(40,80). But we don't know how to break it in 2%,

e Direct solution takes < 2% mults (guesstimated at 2% cycles)
via XL-Wiedemann (Dxr = 14, T = 3245372870670).

e Data complexity is 10000 TB (only ~ 2° bits) for the matrix.

13

Why Only 2 Blocks?

e Practical answer: we test with degree-8 equations; doesn't help.

e [heoretical answer: the XL operating degree is

((1= (1 —th)"

Dy =min< D : [t”] T <0,,

\ /

Hence w := Dx/n ~ the smallest positive zero of f,(w) :=
7{ (1 —2%)"(1 — 24" 7{ dz (14 2)(1—2H\"
dz =
(1 _ Z)nJrlanJrl Z(l _ Z) S W

14

Diminishing Returns (for large q)

4 n
In asymptotic analysis, f,(w) = fﬁz(ffz) (Hz)z(ul,_z)) can

only vanish if the saddle point equation of the integral, letting the
derivative of the expression between the paren be zero:

(w—5)2"+2° -2 +2—w=0

has double roots (a “monkey saddle”), which happens when w is

very close to 0.2 (actually ~ 0.200157957).

Similar computations including degree-8 equations only make it
w ~ 0.1998. Clearly not worth our time.

15

QUAD(2,160,160): An Unproven Case

e QUAD(2, 160, 160) takes ~ 21 multiplications to attack directly:
just solve 160 equations in 160 variables using XL.

e For n < 200, the effect of using quartic and degree-8 equations
(2nd, 3rd output blocks and beyond) is not discernible.

e Similar asymptotics as above shows that for large m they
(eventually) make a big difference.

e [he underlying M@ problem of 160 vars and 320 equations takes

2140 multiplications, which seems high enough, but . . .

16

Tightness of Reduction

e QUAD attack implies an M@ attack with a loss of efficiency.

e Specifically, if Ar bits of output from QUAD(2,m,r) can be
distinguished from uniform with advantage € in time 1" then

a random M@ system of n + r equations in n variables over
GF(2) can be solved with probability 27%¢/X in time

27 2)\2 27)\2 27)\2
<2’ (T+()\+2)T5—|—log(n2)+2>| n2 T«

- €2 € €

where Tl := time to run one block of QUAD(2, n, 1).

17

Proven and Unproved Cases for ¢ = 2

The looseness factor is about 21On2)\3/63. fe=0.01 n=r
and L = An = 2% this factor is then 2°V/n. The theorem
cannot conclude T' > 2% without assuming that T" > 2290 /n,

e n = 160 is hence Unproven (original QUAD paper states this).

oen = 256: Proven for L = 2% ¢ = 0.01, T' ~ 2°%
(multiplications). In fact we only need 7" > 2168,

en = 350: Proven for L = 2% ¢ = 0.01, TV ~ 2%
(multiplications). We only needed T" > 221

18

A Note on T2%37

o Often 72370 is ysed as the cost of eliminations.

e [his discounts the huge constant that is expected from the
Coppersmith-Winograd paper.

o \We improve T?37 to T2, using a sparse matrix algorithm, but
there are still factors in front of T

e This explains the gap in the analysis for QUAD(2, 350, 350).

19

Conclusions and TODOs

e Generically MQ is believed to be exponential in n. Complexity
of breaking QUAD would then also be of the form 29"+ Byt
the coefficient a (= a(q,r/n)) can be surprisingly small.

e QUAD is clearly a worthwhile attempt and worth optimizing further.

e \We need tighter reductions. At the moment, we are reducing from
what seems to be a more difficult problem to an easier problem.

e Comparisons between ciphers w. provably secure parameters?’

e [aking into account storage access delays and parallelism?

20

Thanks to

e Our gracious hosts and organizers

e Academia Sinica and TWISC (Taiwan Info. Security Center)

e Dr. Bo-Yin Yang, Prof. Dan Bernstein, Dr. Jiun-Ming Chen.

e Everyone for being here.

QUESTIONS??

21

Why Wiedemann and not Lanczos

The two should be more or less equivalent in modern forms. We
chose Wiedemann over Lanczos because in the naive forms

e Because it is easier to program well. Lanczos requires multiplying
by a sparse matrix in opposite directions.

e We don't need to use a random diagonal vector.

e \We just had the code ready to use.

22

Why XL and not Fj

o [heoretical: Working on the top degree monomials, for large fields
XL2/F4/F5 play with one fewer variable. This may not offset
dense vs. sparse matrix equation solving difference it w > 2.

e Practical: If the matrices of F4/F5 will eventually become
moderately dense, we will run out of memory before time.

m—n Dxi, Dyeg n=9 | n=10 | n=11 n =12 n =13
0 2 m 6.090 | 46.770 | 350.530 | 3322.630 | sigmem
1 m [1.240 8970 | 53.730 | 413780 | 2538.870
2 [mtly | pmaA2ovmiZy | g3 2230 | 12450 | 88.180 | 436.600

Test results given on P4-3.2G, 2GB RAM, MAGMA-2.12 with Fy.

e Pragmatic: we don't have a copy of F5 to play with.

23

Basic XL at Degree D
Let 7P):={deg < D monomials}, T := |TP)|

e EXTEND: first multiply each p; of degree d; by every monomial
xP = :E[il e CE,%” c TWP~di) 4 get equations R

o LINEARIZE: then reduce RP) as a linear system in all the
xP € TW) \We may be able to solve the system or to reduce
down to a univariate equation (say in x1).

R =]R(D)\ and I counts resp. equations and independent
equations among R,

24

Toy XL example over GF(7)

p1: x4+ Ay*+ 2%+ bry+ 2xz+ 6yz+
pa: 3%+ 2P+ 32°4+ dxy+ 6zt 2yz+

ps: 2%+ 3yt+ 22°+ bay+
pa: 6224+ 3yP+ 3%+

brz+

2yz+
yz+

Sdr+

3Y+

6rx+ 4dy+

4+

Y+
Sy

D2+
3z+

Z+
22+

oS O O O

Here n = 3, m = 4, we will use D = 3, and multiply every

equation by 1, z, vy, z to get ((g)) = 20 monomials (including 1)

and 4 X 4 = 16 equations.

25

The Extended Macaulay Matrix

2
0

7 vor
1 3

Tz Yz
2 6

zy
)

26

IMination

The Result of EI

2
0

7 vor
5 0

Tz Yz
5 0

Ty
3

27

Operative Condition and Cost of XL

e XL solves a system if T'— I < min(D,q—1).

e Other situations where XL also succeeds are called “pathological
terminations . [Our example above is one |

o let (N, M) := the time complexity of elimination on N
variables and M equations, then XL takes time Cy;, ~ E(T, R).

e Asymptotically Ig E(T, R) ~ wlgT, where w is "the order of
matrix multiplication”. An often-cited number is 2.376.

28

