improving the security of MACs via randomized
message preprocessing

Yevgeniy Dodis (New York University)
Krzysztof Pietrzak (CWI Amsterdam)

March 26, 2007

FSE 2007 March 27, 2007

Symmetric Authentication: Message Authentication Codes

FSE 2007 March 27, 2007

Symmetric Authentication: Message Authentication Codes

M, K N
¢ = MAC(K, M) %
-!7\, %

‘J M7¢ M,7¢,_>

K

¢ £ MAC(K, M)

» Kermit and Peggy share a secret key K.

» Kermit sends an authentication tag ¢ = MAC(K, M) together
with message M.

> Peggy accepts M’ iff ¢/ = MAC(K, M").

FSE 2007

March 27, 2007

Symmetric Authentication: Message Authentication Codes

M, K - ,;h
é = MAC(K, M) Kg
-b,)/

‘J M7¢ M,7¢,_>

M 2 mAc(k, M)

» Kermit and Peggy share a secret key K.
» Kermit sends an authentication tag ¢ = MAC(K, M) together
with message M.
> Peggy accepts M’ iff ¢/ = MAC(K, M").
» Security: It should be hard for Beeker (who does not know K)
to come up with a pair (M’, ¢') where
> ¢ = MAC(K, M)
» Kermit did not already send (M’ ¢)

FSE 2007 March 27, 2007

Asymmetric Authentication: Digital Signatures

FSE 2007 March 27, 2007

Asymmetric Authentication: Digital Signatures

M, Sk, Pk P ,;\\ Pk
¢ = Sign(Sk, M) =
-b,)/

Y M, ¢ M, ¢

Pk

Verify(Pk, ¢', M")

» Kermit generates a secret/public-key par Sk, Pk and send Pk
to Peggy over an authentic chanell.

» Kermit sends Signature ¢ = Sign(Sk, M) together with
message M.

» Peggy accepts M’ iff Verify(Pk,¢', M") = accept.

FSE 2007 March 27, 2007

Asymmetric Authentication: Digital Signatures

M, Sk, Pk P ‘§t Pk
¢ = Sign(Sk, M) b
-b,)/

J M, ¢ M, ¢

Pk

Verify(Pk, ¢', M")

» Kermit generates a secret/public-key par Sk, Pk and send Pk
to Peggy over an authentic chanell.
» Kermit sends Signature ¢ = Sign(Sk, M) together with
message M.
» Peggy accepts M’ iff Verify(Pk,¢', M") = accept.
» Security: It should be hard for Beeker (who does not know
Sk) to come up with a pair (M, ¢’) where
» Verify(Pk,¢', M") = accept
» Kermit did not already send (M’ ¢)

FSE 2007 March 27, 2007

Hash then Sign/MAC/Encrypt

Sk—| Sign K—>
¢ ¢

hash & Sign hash & MAC

» CRHF: Pr[A — X, X' : H(X) = H(X")] = small

FSE 2007 March 27, 2007

Hash then Sign/MAC/Encrypt

Sk—| Sign K—>
¢ ¢

hash & Sign hash & MAC hash & Sign

> CRHF: Pr[A — X, X' : H(X) = H(X)] = small
» UOWHF: maxx Prr[A(R) — X' : Hr(X) = Hr(X")] = small

FSE 2007 March 27, 2007

Hash then Sign/MAC/Encrypt

CRHF CRHF R Kpash
Sk— Slgn K—> Sk— Kenc_) Enc
¢ ¢

o, R ¢
hash & Sign hash & MAC hash & Sign hash & encrypt

> CRHF: Pr[A — X, X' : H(X) = H(X")] = small
» UOWHF: maxx Prr[A(R) — X' : Hr(X) = Hr(X")] = small
> €—XUH: maXX7X/ PrKhash [HKhash (X) = HKhash (X/)] S €

FSE 2007 March 27, 2007

Hash then Encrypt

Khast={ XUH |

Kenc—| Enc
¢

FSE 2007 March 27, 2007

Hash then Encrypt

To analyze the security we replace Enc with a uniformly random
permutation & : {0, 1}k — {0, 1}k

FSE 2007 March 27, 2007

Sample K and £ at random

MAC queries Forgery queries
— M
J

[Hl—« ? K—1H]
oi — | S" \\ —>¢/- ¢jl

j
Beeker wins if for some j, ¢ = ¢/,

M; —

Theorem (security of hash then encrypt)

If H is e-universal then
Pr[Beeker wins] < € - q,%,ac + € Gorge

where Gmac/Qforge is the number of MAC /forgery queries.

FSE 2007 March 27, 2007

Theorem (security of hash then encrypt)

If H is e-universal then
Pr[Beeker wins] < € - e + € - Qrorge

where Gmac/Qforge is the number of MAC /forgery queries.

Pr[collision] + Pr[forgery|no collision]

2
(&8 qmac + € e qforge

Pr[Beeker wins]

IA A

FSE 2007 March 27, 2007

Theorem (security of hash then encrypt)

If H is e-universal then

Pr[Beeker wins] < € - e + € - Qrorge

where Gmac/Qforge is the number of MAC /forgery queries.

Corollary

g = Qmac 1+ Gforge
If H is O(1/2k) universal, then the security is O(q?/2%).
If H is O(|M|/2%) universal, then the security is O(|M|q?/2).

FSE 2007 March 27, 2007

Theorem (security of hash then encrypt)

If H is e-universal then

Pr[Beeker wins] < € - e + € - Qrorge

where Gmac/Qforge is the number of MAC /forgery queries.

Corollary

g = Qmac 1+ Gforge
If H is O(1/2k) universal, then the security is O(q?/2%).
If H is O(|M|/2%) universal, then the security is O(|M|q?/2).

Can we get O(g?/2) security using O(|M|/2%) universal hashing?

FSE 2007 March 27, 2007

Theorem (security of hash then encrypt)

If H is e-universal then

Pr[Beeker wins] < € - e + € - Qrorge

where Gmac/Qforge is the number of MAC /forgery queries.

Corollary

g = Qmac 1+ Gforge
If H is O(1/2k) universal, then the security is O(q?/2%).
If H is O(|M|/2%) universal, then the security is O(|M|q?/2).

Can we get O(g?/2) security using O(|M|/2%) universal hashing?
Yes, by randomizing the message

FSE 2007 March 27, 2007

Theorem (security of hash then encrypt)

If H is e-universal then

Pr[Beeker wins] < € - e + € - Qrorge

where Gmac/Qforge is the number of MAC /forgery queries.

Corollary

g = Qmac 1+ Gforge
If H is O(1/2k) universal, then the security is O(q?/2%).
If H is O(|M|/2%) universal, then the security is O(|M|q?/2).

Can we get O(g?/2) security using O(|M|/2%) universal hashing?
Yes, by randomizing the message using only O(log(|M|)) random
bits.

FSE 2007 March 27, 2007

almost universal hash-functions

Definition (e-universal hash function)

H: K x M — T is € universal if

VM # M € M: Pr[H(K,M) = H(K,M')] < c
€

> H: 73 x Z; — Z; where Hy (M) = (x- M+ y mod L) mod ¢
is 1/¢ universal.

> H:ngZgHZgwhere
Ho(My,...,Mg) =x-My +x%> My +---+x9. My is
d/{-universal

FSE 2007 March 27, 2007

the salted hash-function paradigm

A salted hash function H is (€fyrge; €mac) universal if
> Inputs collide with probability < €fyge if salt is not random.

» Inputs collide with probability < €, if salt is random.

Definition ((€forge, €mac)-universal salted hash function)

H:P xKxM —Tis (€forges €mac) universal if
V(M, P) # (M, P'):

Pr [H(K,P,M ;é H(K,P', M| < »
KEFC,[()) (»)] €forge
V(M, M/, F) o

P H(K,P,M H(K,P', M| <
KEIC,IE’EP[(s 1y)3"é (PR)]_Gmac

FSE 2007 March 27, 2007

salted hash then encrypt

i
K> e — XUH | K, P->| (€forges €mac) — XUH|
¢ ¢, P
hash then encrypt salted hash then encrypt

on each invocation a random
salt P is chosen by the MAC

FSE 2007 March 27, 2007

Sample K and £ at random

MAC queries Forgery queries
!
— P, M

M;

(H]—K,PeP K—{H]
%
61, P —— ' —d 4

Beeker wins if for some j, ¢} = ¢'.

Theorem (security of salted hash then encrypt)

If H is (€forge , €mac)-universal then
. 2
Pr[Beeker wins] < €mac * Gmac + €forge * Gforge

where Gmac/Qforge is the number of MAC /forgery queries.

FSE 2007 March 27, 2007

Theorem (security of salted hash then encrypt)

If H is (¢forge , €mac)-universal then
Pr[Beeker wins] < €pac - q,%,ac ~F G © Clas
where Gmac/Qforge is the number of MAC /forgery queries.

To achieve optimal O(q?/2%) security (¢ = Gmac + Gforge), We just
need €mac € ©(1/25) but €fpge can be much bigger.

As the salt is part of the output, we want the domain P for the
salt to be small.

FSE 2007 March 27, 2007

the generic result, proof of concept [1]

M e o, l}L M||P € {0,1}" x {0,1}lst
€]
{O, 1}k = {0, 1}

Theorem (generic construction)

Let H:{0,1} — {0,1}* be L/2* universal & balanced
3 permutation over g : {0,1}-'°8(1) such that with P € {0,1}'°8L

H'(K, P, M) := H(K,g(M||P))
i (Eforges €mac) universal with
Eforge = (L+ Iog(L))/Qk €mac = 2/2k

FSE 2007 March 27, 2007

the generic result, proof of concept [2]

Generic Construction
» Optimal €mac = 2/2K.
» Salt of length log(L) if H is L/2% universal.
In general: If H is L¢/2%-universal, then salt will be c - log(L)
» Non-constructive.

FSE 2007 March 27, 2007

a concrete example: polynomial evaluation [1]

H:Z; x Z§ — Z; where
Ho(My,...,Mg) =x-My +x> My+---+x9- My is d/l-universal

Theorem (set constant coefficient completely random)

H' 7y x Zy x Z? — Zy where
H(P,My,...,Mg) =P +x-M+x*> Mo+ ---+x9- My is
(Eforge’ 6mac) universal Eforge = d/¢ and optimal € = 1/¢.

H, (P, M) = H.(P', M") for exactly one possible P € Zj, thus
€mac = 1/£. O

FSE 2007 March 27, 2007

a concrete example: polynomial evaluation [1]

H:Z; x Z§ — Z; where
Ho(My,...,Mg) =x-My +x> My+---+x9- My is d/l-universal

Theorem (set constant coefficient completely random)

H' 7y x Zy x Z? — Zy where
H(P,My,...,Mg) =P +x-M+x*> Mo+ ---+x9- My is
(Eforge’ 6mac) universal Eforge = d/¢ and optimal € = 1/¢.

H, (P, M) = H.(P', M") for exactly one possible P € Zj, thus
€mac = 1/£. O

Trivial, optimal €mac but |P| = log(¥) is large.

FSE 2007 March 27, 2007

a concrete example: polynomial evaluation [2]

H:Z; x Z§ — Z; where
Ho(My,...,Mg) =x-My +x> My+---+x9- My is d/l-universal

Theorem (choose constant coefficient from a small set)

IP C Ze, |P| = d® s.t. H' : P x Zy x Zg — Zy where
H.(P,My,...,My)=P+x-M+x2- Mo+ +x9- My is
(Eforgey 6mac) universal €forge = d/ﬂ and optimal €pmac = 2/6

FSE 2007 March 27, 2007

a concrete example: polynomial evaluation [2]

H:Z; x Z§ — Z; where
Ho(My,...,Mg) =x-My +x> My+---+x9- My is d/l-universal

Theorem (choose constant coefficient from a small set)

IP C Ze, |P| = d® s.t. H' : P x Zy x Zg — Zy where
H.(P,My,...,My)=P+x-M+x2- Mo+ +x9- My is
(Eforgey 6mac) universal €forge = d/ﬂ and optimal €pmac = 2/€

Optimal €mac, small |P| =3 - log(d).
No constructive way to choose P, but choosing it at random will
do with high probability.

FSE 2007 March 27, 2007

Conclusions

» Introduced the concept of salted almost universal hash
functions.
» Show their usefulness for hash then encrypt.

» Generic result: any XUH can be turned into a salted XUH
where

» The random salt is very short.
» The collision probability with random salt (emac) is optimal.

Give concrete such transformations for polynomial evaluation.

» Moreover in the paper: transformation for Merkle-Damgard.
Generic result for XOR-universal hash functions.

FSE 2007 March 27, 2007

